3.2.62 \(\int \frac {(c+d x^4)^2}{a+b x^4} \, dx\) [162]

3.2.62.1 Optimal result
3.2.62.2 Mathematica [A] (verified)
3.2.62.3 Rubi [A] (verified)
3.2.62.4 Maple [C] (verified)
3.2.62.5 Fricas [C] (verification not implemented)
3.2.62.6 Sympy [A] (verification not implemented)
3.2.62.7 Maxima [A] (verification not implemented)
3.2.62.8 Giac [A] (verification not implemented)
3.2.62.9 Mupad [B] (verification not implemented)

3.2.62.1 Optimal result

Integrand size = 19, antiderivative size = 253 \[ \int \frac {\left (c+d x^4\right )^2}{a+b x^4} \, dx=\frac {d (2 b c-a d) x}{b^2}+\frac {d^2 x^5}{5 b}-\frac {(b c-a d)^2 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{9/4}}+\frac {(b c-a d)^2 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{9/4}}-\frac {(b c-a d)^2 \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{9/4}}+\frac {(b c-a d)^2 \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{9/4}} \]

output
d*(-a*d+2*b*c)*x/b^2+1/5*d^2*x^5/b+1/4*(-a*d+b*c)^2*arctan(-1+b^(1/4)*x*2^ 
(1/2)/a^(1/4))/a^(3/4)/b^(9/4)*2^(1/2)+1/4*(-a*d+b*c)^2*arctan(1+b^(1/4)*x 
*2^(1/2)/a^(1/4))/a^(3/4)/b^(9/4)*2^(1/2)-1/8*(-a*d+b*c)^2*ln(-a^(1/4)*b^( 
1/4)*x*2^(1/2)+a^(1/2)+x^2*b^(1/2))/a^(3/4)/b^(9/4)*2^(1/2)+1/8*(-a*d+b*c) 
^2*ln(a^(1/4)*b^(1/4)*x*2^(1/2)+a^(1/2)+x^2*b^(1/2))/a^(3/4)/b^(9/4)*2^(1/ 
2)
 
3.2.62.2 Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 231, normalized size of antiderivative = 0.91 \[ \int \frac {\left (c+d x^4\right )^2}{a+b x^4} \, dx=\frac {-40 a^{3/4} \sqrt [4]{b} d (-2 b c+a d) x+8 a^{3/4} b^{5/4} d^2 x^5-10 \sqrt {2} (b c-a d)^2 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )+10 \sqrt {2} (b c-a d)^2 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )-5 \sqrt {2} (b c-a d)^2 \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )+5 \sqrt {2} (b c-a d)^2 \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{40 a^{3/4} b^{9/4}} \]

input
Integrate[(c + d*x^4)^2/(a + b*x^4),x]
 
output
(-40*a^(3/4)*b^(1/4)*d*(-2*b*c + a*d)*x + 8*a^(3/4)*b^(5/4)*d^2*x^5 - 10*S 
qrt[2]*(b*c - a*d)^2*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)] + 10*Sqrt[2]* 
(b*c - a*d)^2*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)] - 5*Sqrt[2]*(b*c - a 
*d)^2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2] + 5*Sqrt[2]*( 
b*c - a*d)^2*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(40*a 
^(3/4)*b^(9/4))
 
3.2.62.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {915, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c+d x^4\right )^2}{a+b x^4} \, dx\)

\(\Big \downarrow \) 915

\(\displaystyle \int \left (\frac {a^2 d^2-2 a b c d+b^2 c^2}{b^2 \left (a+b x^4\right )}+\frac {d (2 b c-a d)}{b^2}+\frac {d^2 x^4}{b}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right ) (b c-a d)^2}{2 \sqrt {2} a^{3/4} b^{9/4}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right ) (b c-a d)^2}{2 \sqrt {2} a^{3/4} b^{9/4}}-\frac {(b c-a d)^2 \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{9/4}}+\frac {(b c-a d)^2 \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{9/4}}+\frac {d x (2 b c-a d)}{b^2}+\frac {d^2 x^5}{5 b}\)

input
Int[(c + d*x^4)^2/(a + b*x^4),x]
 
output
(d*(2*b*c - a*d)*x)/b^2 + (d^2*x^5)/(5*b) - ((b*c - a*d)^2*ArcTan[1 - (Sqr 
t[2]*b^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*b^(9/4)) + ((b*c - a*d)^2*Arc 
Tan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*b^(9/4)) - ((b*c 
- a*d)^2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(4*Sqrt[2 
]*a^(3/4)*b^(9/4)) + ((b*c - a*d)^2*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)* 
x + Sqrt[b]*x^2])/(4*Sqrt[2]*a^(3/4)*b^(9/4))
 

3.2.62.3.1 Defintions of rubi rules used

rule 915
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Int[PolynomialDivide[(a + b*x^n)^p, (c + d*x^n)^(-q), x], x] /; FreeQ[{a 
, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IGtQ[p, 0] && ILtQ[q, 
0] && GeQ[p, -q]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.2.62.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 4.11 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.31

method result size
risch \(\frac {d^{2} x^{5}}{5 b}-\frac {d^{2} a x}{b^{2}}+\frac {2 d c x}{b}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{4 b^{3}}\) \(78\)
default \(-\frac {d \left (-\frac {1}{5} b d \,x^{5}+a d x -2 b c x \right )}{b^{2}}+\frac {\left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}{x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 b^{2} a}\) \(150\)

input
int((d*x^4+c)^2/(b*x^4+a),x,method=_RETURNVERBOSE)
 
output
1/5*d^2*x^5/b-d^2/b^2*a*x+2*d/b*c*x+1/4/b^3*sum((a^2*d^2-2*a*b*c*d+b^2*c^2 
)/_R^3*ln(x-_R),_R=RootOf(_Z^4*b+a))
 
3.2.62.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 1093, normalized size of antiderivative = 4.32 \[ \int \frac {\left (c+d x^4\right )^2}{a+b x^4} \, dx=\frac {4 \, b d^{2} x^{5} + 5 \, b^{2} \left (-\frac {b^{8} c^{8} - 8 \, a b^{7} c^{7} d + 28 \, a^{2} b^{6} c^{6} d^{2} - 56 \, a^{3} b^{5} c^{5} d^{3} + 70 \, a^{4} b^{4} c^{4} d^{4} - 56 \, a^{5} b^{3} c^{3} d^{5} + 28 \, a^{6} b^{2} c^{2} d^{6} - 8 \, a^{7} b c d^{7} + a^{8} d^{8}}{a^{3} b^{9}}\right )^{\frac {1}{4}} \log \left (a b^{2} \left (-\frac {b^{8} c^{8} - 8 \, a b^{7} c^{7} d + 28 \, a^{2} b^{6} c^{6} d^{2} - 56 \, a^{3} b^{5} c^{5} d^{3} + 70 \, a^{4} b^{4} c^{4} d^{4} - 56 \, a^{5} b^{3} c^{3} d^{5} + 28 \, a^{6} b^{2} c^{2} d^{6} - 8 \, a^{7} b c d^{7} + a^{8} d^{8}}{a^{3} b^{9}}\right )^{\frac {1}{4}} + {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} x\right ) + 5 i \, b^{2} \left (-\frac {b^{8} c^{8} - 8 \, a b^{7} c^{7} d + 28 \, a^{2} b^{6} c^{6} d^{2} - 56 \, a^{3} b^{5} c^{5} d^{3} + 70 \, a^{4} b^{4} c^{4} d^{4} - 56 \, a^{5} b^{3} c^{3} d^{5} + 28 \, a^{6} b^{2} c^{2} d^{6} - 8 \, a^{7} b c d^{7} + a^{8} d^{8}}{a^{3} b^{9}}\right )^{\frac {1}{4}} \log \left (i \, a b^{2} \left (-\frac {b^{8} c^{8} - 8 \, a b^{7} c^{7} d + 28 \, a^{2} b^{6} c^{6} d^{2} - 56 \, a^{3} b^{5} c^{5} d^{3} + 70 \, a^{4} b^{4} c^{4} d^{4} - 56 \, a^{5} b^{3} c^{3} d^{5} + 28 \, a^{6} b^{2} c^{2} d^{6} - 8 \, a^{7} b c d^{7} + a^{8} d^{8}}{a^{3} b^{9}}\right )^{\frac {1}{4}} + {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} x\right ) - 5 i \, b^{2} \left (-\frac {b^{8} c^{8} - 8 \, a b^{7} c^{7} d + 28 \, a^{2} b^{6} c^{6} d^{2} - 56 \, a^{3} b^{5} c^{5} d^{3} + 70 \, a^{4} b^{4} c^{4} d^{4} - 56 \, a^{5} b^{3} c^{3} d^{5} + 28 \, a^{6} b^{2} c^{2} d^{6} - 8 \, a^{7} b c d^{7} + a^{8} d^{8}}{a^{3} b^{9}}\right )^{\frac {1}{4}} \log \left (-i \, a b^{2} \left (-\frac {b^{8} c^{8} - 8 \, a b^{7} c^{7} d + 28 \, a^{2} b^{6} c^{6} d^{2} - 56 \, a^{3} b^{5} c^{5} d^{3} + 70 \, a^{4} b^{4} c^{4} d^{4} - 56 \, a^{5} b^{3} c^{3} d^{5} + 28 \, a^{6} b^{2} c^{2} d^{6} - 8 \, a^{7} b c d^{7} + a^{8} d^{8}}{a^{3} b^{9}}\right )^{\frac {1}{4}} + {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} x\right ) - 5 \, b^{2} \left (-\frac {b^{8} c^{8} - 8 \, a b^{7} c^{7} d + 28 \, a^{2} b^{6} c^{6} d^{2} - 56 \, a^{3} b^{5} c^{5} d^{3} + 70 \, a^{4} b^{4} c^{4} d^{4} - 56 \, a^{5} b^{3} c^{3} d^{5} + 28 \, a^{6} b^{2} c^{2} d^{6} - 8 \, a^{7} b c d^{7} + a^{8} d^{8}}{a^{3} b^{9}}\right )^{\frac {1}{4}} \log \left (-a b^{2} \left (-\frac {b^{8} c^{8} - 8 \, a b^{7} c^{7} d + 28 \, a^{2} b^{6} c^{6} d^{2} - 56 \, a^{3} b^{5} c^{5} d^{3} + 70 \, a^{4} b^{4} c^{4} d^{4} - 56 \, a^{5} b^{3} c^{3} d^{5} + 28 \, a^{6} b^{2} c^{2} d^{6} - 8 \, a^{7} b c d^{7} + a^{8} d^{8}}{a^{3} b^{9}}\right )^{\frac {1}{4}} + {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} x\right ) + 20 \, {\left (2 \, b c d - a d^{2}\right )} x}{20 \, b^{2}} \]

input
integrate((d*x^4+c)^2/(b*x^4+a),x, algorithm="fricas")
 
output
1/20*(4*b*d^2*x^5 + 5*b^2*(-(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 
- 56*a^3*b^5*c^5*d^3 + 70*a^4*b^4*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^ 
2*c^2*d^6 - 8*a^7*b*c*d^7 + a^8*d^8)/(a^3*b^9))^(1/4)*log(a*b^2*(-(b^8*c^8 
 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a^4*b^4*c^ 
4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + a^8*d^8) 
/(a^3*b^9))^(1/4) + (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*x) + 5*I*b^2*(-(b^8*c^ 
8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a^4*b^4*c 
^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + a^8*d^8 
)/(a^3*b^9))^(1/4)*log(I*a*b^2*(-(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6 
*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a^4*b^4*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a 
^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + a^8*d^8)/(a^3*b^9))^(1/4) + (b^2*c^2 - 2* 
a*b*c*d + a^2*d^2)*x) - 5*I*b^2*(-(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^ 
6*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a^4*b^4*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28* 
a^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + a^8*d^8)/(a^3*b^9))^(1/4)*log(-I*a*b^2*( 
-(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a 
^4*b^4*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + 
 a^8*d^8)/(a^3*b^9))^(1/4) + (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*x) - 5*b^2*(- 
(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^2*b^6*c^6*d^2 - 56*a^3*b^5*c^5*d^3 + 70*a^ 
4*b^4*c^4*d^4 - 56*a^5*b^3*c^3*d^5 + 28*a^6*b^2*c^2*d^6 - 8*a^7*b*c*d^7 + 
a^8*d^8)/(a^3*b^9))^(1/4)*log(-a*b^2*(-(b^8*c^8 - 8*a*b^7*c^7*d + 28*a^...
 
3.2.62.6 Sympy [A] (verification not implemented)

Time = 0.53 (sec) , antiderivative size = 187, normalized size of antiderivative = 0.74 \[ \int \frac {\left (c+d x^4\right )^2}{a+b x^4} \, dx=x \left (- \frac {a d^{2}}{b^{2}} + \frac {2 c d}{b}\right ) + \operatorname {RootSum} {\left (256 t^{4} a^{3} b^{9} + a^{8} d^{8} - 8 a^{7} b c d^{7} + 28 a^{6} b^{2} c^{2} d^{6} - 56 a^{5} b^{3} c^{3} d^{5} + 70 a^{4} b^{4} c^{4} d^{4} - 56 a^{3} b^{5} c^{5} d^{3} + 28 a^{2} b^{6} c^{6} d^{2} - 8 a b^{7} c^{7} d + b^{8} c^{8}, \left ( t \mapsto t \log {\left (\frac {4 t a b^{2}}{a^{2} d^{2} - 2 a b c d + b^{2} c^{2}} + x \right )} \right )\right )} + \frac {d^{2} x^{5}}{5 b} \]

input
integrate((d*x**4+c)**2/(b*x**4+a),x)
 
output
x*(-a*d**2/b**2 + 2*c*d/b) + RootSum(256*_t**4*a**3*b**9 + a**8*d**8 - 8*a 
**7*b*c*d**7 + 28*a**6*b**2*c**2*d**6 - 56*a**5*b**3*c**3*d**5 + 70*a**4*b 
**4*c**4*d**4 - 56*a**3*b**5*c**5*d**3 + 28*a**2*b**6*c**6*d**2 - 8*a*b**7 
*c**7*d + b**8*c**8, Lambda(_t, _t*log(4*_t*a*b**2/(a**2*d**2 - 2*a*b*c*d 
+ b**2*c**2) + x))) + d**2*x**5/(5*b)
 
3.2.62.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 287, normalized size of antiderivative = 1.13 \[ \int \frac {\left (c+d x^4\right )^2}{a+b x^4} \, dx=\frac {b d^{2} x^{5} + 5 \, {\left (2 \, b c d - a d^{2}\right )} x}{5 \, b^{2}} + \frac {\frac {2 \, \sqrt {2} {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {2 \, \sqrt {2} {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {\sqrt {2} {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \log \left (\sqrt {b} x^{2} + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}} - \frac {\sqrt {2} {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \log \left (\sqrt {b} x^{2} - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}}}{8 \, b^{2}} \]

input
integrate((d*x^4+c)^2/(b*x^4+a),x, algorithm="maxima")
 
output
1/5*(b*d^2*x^5 + 5*(2*b*c*d - a*d^2)*x)/b^2 + 1/8*(2*sqrt(2)*(b^2*c^2 - 2* 
a*b*c*d + a^2*d^2)*arctan(1/2*sqrt(2)*(2*sqrt(b)*x + sqrt(2)*a^(1/4)*b^(1/ 
4))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + 2*sqrt(2)*(b^ 
2*c^2 - 2*a*b*c*d + a^2*d^2)*arctan(1/2*sqrt(2)*(2*sqrt(b)*x - sqrt(2)*a^( 
1/4)*b^(1/4))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + sqr 
t(2)*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*log(sqrt(b)*x^2 + sqrt(2)*a^(1/4)*b^( 
1/4)*x + sqrt(a))/(a^(3/4)*b^(1/4)) - sqrt(2)*(b^2*c^2 - 2*a*b*c*d + a^2*d 
^2)*log(sqrt(b)*x^2 - sqrt(2)*a^(1/4)*b^(1/4)*x + sqrt(a))/(a^(3/4)*b^(1/4 
)))/b^2
 
3.2.62.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 353, normalized size of antiderivative = 1.40 \[ \int \frac {\left (c+d x^4\right )^2}{a+b x^4} \, dx=\frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c^{2} - 2 \, \left (a b^{3}\right )^{\frac {1}{4}} a b c d + \left (a b^{3}\right )^{\frac {1}{4}} a^{2} d^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c^{2} - 2 \, \left (a b^{3}\right )^{\frac {1}{4}} a b c d + \left (a b^{3}\right )^{\frac {1}{4}} a^{2} d^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c^{2} - 2 \, \left (a b^{3}\right )^{\frac {1}{4}} a b c d + \left (a b^{3}\right )^{\frac {1}{4}} a^{2} d^{2}\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{3}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c^{2} - 2 \, \left (a b^{3}\right )^{\frac {1}{4}} a b c d + \left (a b^{3}\right )^{\frac {1}{4}} a^{2} d^{2}\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{3}} + \frac {b^{4} d^{2} x^{5} + 10 \, b^{4} c d x - 5 \, a b^{3} d^{2} x}{5 \, b^{5}} \]

input
integrate((d*x^4+c)^2/(b*x^4+a),x, algorithm="giac")
 
output
1/4*sqrt(2)*((a*b^3)^(1/4)*b^2*c^2 - 2*(a*b^3)^(1/4)*a*b*c*d + (a*b^3)^(1/ 
4)*a^2*d^2)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a 
*b^3) + 1/4*sqrt(2)*((a*b^3)^(1/4)*b^2*c^2 - 2*(a*b^3)^(1/4)*a*b*c*d + (a* 
b^3)^(1/4)*a^2*d^2)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/b)^(1/4))/(a/b)^( 
1/4))/(a*b^3) + 1/8*sqrt(2)*((a*b^3)^(1/4)*b^2*c^2 - 2*(a*b^3)^(1/4)*a*b*c 
*d + (a*b^3)^(1/4)*a^2*d^2)*log(x^2 + sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/( 
a*b^3) - 1/8*sqrt(2)*((a*b^3)^(1/4)*b^2*c^2 - 2*(a*b^3)^(1/4)*a*b*c*d + (a 
*b^3)^(1/4)*a^2*d^2)*log(x^2 - sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/(a*b^3) 
+ 1/5*(b^4*d^2*x^5 + 10*b^4*c*d*x - 5*a*b^3*d^2*x)/b^5
 
3.2.62.9 Mupad [B] (verification not implemented)

Time = 5.71 (sec) , antiderivative size = 1081, normalized size of antiderivative = 4.27 \[ \int \frac {\left (c+d x^4\right )^2}{a+b x^4} \, dx=\frac {d^2\,x^5}{5\,b}-x\,\left (\frac {a\,d^2}{b^2}-\frac {2\,c\,d}{b}\right )+\frac {\mathrm {atan}\left (\frac {\frac {{\left (a\,d-b\,c\right )}^2\,\left (\frac {x\,\left (a^4\,d^4-4\,a^3\,b\,c\,d^3+6\,a^2\,b^2\,c^2\,d^2-4\,a\,b^3\,c^3\,d+b^4\,c^4\right )}{b}-\frac {{\left (a\,d-b\,c\right )}^2\,\left (4\,a^3\,b\,d^2-8\,a^2\,b^2\,c\,d+4\,a\,b^3\,c^2\right )}{4\,{\left (-a\right )}^{3/4}\,b^{9/4}}\right )\,1{}\mathrm {i}}{{\left (-a\right )}^{3/4}\,b^{9/4}}+\frac {{\left (a\,d-b\,c\right )}^2\,\left (\frac {x\,\left (a^4\,d^4-4\,a^3\,b\,c\,d^3+6\,a^2\,b^2\,c^2\,d^2-4\,a\,b^3\,c^3\,d+b^4\,c^4\right )}{b}+\frac {{\left (a\,d-b\,c\right )}^2\,\left (4\,a^3\,b\,d^2-8\,a^2\,b^2\,c\,d+4\,a\,b^3\,c^2\right )}{4\,{\left (-a\right )}^{3/4}\,b^{9/4}}\right )\,1{}\mathrm {i}}{{\left (-a\right )}^{3/4}\,b^{9/4}}}{\frac {{\left (a\,d-b\,c\right )}^2\,\left (\frac {x\,\left (a^4\,d^4-4\,a^3\,b\,c\,d^3+6\,a^2\,b^2\,c^2\,d^2-4\,a\,b^3\,c^3\,d+b^4\,c^4\right )}{b}-\frac {{\left (a\,d-b\,c\right )}^2\,\left (4\,a^3\,b\,d^2-8\,a^2\,b^2\,c\,d+4\,a\,b^3\,c^2\right )}{4\,{\left (-a\right )}^{3/4}\,b^{9/4}}\right )}{{\left (-a\right )}^{3/4}\,b^{9/4}}-\frac {{\left (a\,d-b\,c\right )}^2\,\left (\frac {x\,\left (a^4\,d^4-4\,a^3\,b\,c\,d^3+6\,a^2\,b^2\,c^2\,d^2-4\,a\,b^3\,c^3\,d+b^4\,c^4\right )}{b}+\frac {{\left (a\,d-b\,c\right )}^2\,\left (4\,a^3\,b\,d^2-8\,a^2\,b^2\,c\,d+4\,a\,b^3\,c^2\right )}{4\,{\left (-a\right )}^{3/4}\,b^{9/4}}\right )}{{\left (-a\right )}^{3/4}\,b^{9/4}}}\right )\,{\left (a\,d-b\,c\right )}^2\,1{}\mathrm {i}}{2\,{\left (-a\right )}^{3/4}\,b^{9/4}}+\frac {\mathrm {atan}\left (\frac {\frac {{\left (a\,d-b\,c\right )}^2\,\left (\frac {x\,\left (a^4\,d^4-4\,a^3\,b\,c\,d^3+6\,a^2\,b^2\,c^2\,d^2-4\,a\,b^3\,c^3\,d+b^4\,c^4\right )}{b}-\frac {{\left (a\,d-b\,c\right )}^2\,\left (4\,a^3\,b\,d^2-8\,a^2\,b^2\,c\,d+4\,a\,b^3\,c^2\right )\,1{}\mathrm {i}}{4\,{\left (-a\right )}^{3/4}\,b^{9/4}}\right )}{{\left (-a\right )}^{3/4}\,b^{9/4}}+\frac {{\left (a\,d-b\,c\right )}^2\,\left (\frac {x\,\left (a^4\,d^4-4\,a^3\,b\,c\,d^3+6\,a^2\,b^2\,c^2\,d^2-4\,a\,b^3\,c^3\,d+b^4\,c^4\right )}{b}+\frac {{\left (a\,d-b\,c\right )}^2\,\left (4\,a^3\,b\,d^2-8\,a^2\,b^2\,c\,d+4\,a\,b^3\,c^2\right )\,1{}\mathrm {i}}{4\,{\left (-a\right )}^{3/4}\,b^{9/4}}\right )}{{\left (-a\right )}^{3/4}\,b^{9/4}}}{\frac {{\left (a\,d-b\,c\right )}^2\,\left (\frac {x\,\left (a^4\,d^4-4\,a^3\,b\,c\,d^3+6\,a^2\,b^2\,c^2\,d^2-4\,a\,b^3\,c^3\,d+b^4\,c^4\right )}{b}-\frac {{\left (a\,d-b\,c\right )}^2\,\left (4\,a^3\,b\,d^2-8\,a^2\,b^2\,c\,d+4\,a\,b^3\,c^2\right )\,1{}\mathrm {i}}{4\,{\left (-a\right )}^{3/4}\,b^{9/4}}\right )\,1{}\mathrm {i}}{{\left (-a\right )}^{3/4}\,b^{9/4}}-\frac {{\left (a\,d-b\,c\right )}^2\,\left (\frac {x\,\left (a^4\,d^4-4\,a^3\,b\,c\,d^3+6\,a^2\,b^2\,c^2\,d^2-4\,a\,b^3\,c^3\,d+b^4\,c^4\right )}{b}+\frac {{\left (a\,d-b\,c\right )}^2\,\left (4\,a^3\,b\,d^2-8\,a^2\,b^2\,c\,d+4\,a\,b^3\,c^2\right )\,1{}\mathrm {i}}{4\,{\left (-a\right )}^{3/4}\,b^{9/4}}\right )\,1{}\mathrm {i}}{{\left (-a\right )}^{3/4}\,b^{9/4}}}\right )\,{\left (a\,d-b\,c\right )}^2}{2\,{\left (-a\right )}^{3/4}\,b^{9/4}} \]

input
int((c + d*x^4)^2/(a + b*x^4),x)
 
output
(d^2*x^5)/(5*b) - x*((a*d^2)/b^2 - (2*c*d)/b) + (atan((((a*d - b*c)^2*((x* 
(a^4*d^4 + b^4*c^4 + 6*a^2*b^2*c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3))/b 
 - ((a*d - b*c)^2*(4*a*b^3*c^2 + 4*a^3*b*d^2 - 8*a^2*b^2*c*d))/(4*(-a)^(3/ 
4)*b^(9/4)))*1i)/((-a)^(3/4)*b^(9/4)) + ((a*d - b*c)^2*((x*(a^4*d^4 + b^4* 
c^4 + 6*a^2*b^2*c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3))/b + ((a*d - b*c) 
^2*(4*a*b^3*c^2 + 4*a^3*b*d^2 - 8*a^2*b^2*c*d))/(4*(-a)^(3/4)*b^(9/4)))*1i 
)/((-a)^(3/4)*b^(9/4)))/(((a*d - b*c)^2*((x*(a^4*d^4 + b^4*c^4 + 6*a^2*b^2 
*c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3))/b - ((a*d - b*c)^2*(4*a*b^3*c^2 
 + 4*a^3*b*d^2 - 8*a^2*b^2*c*d))/(4*(-a)^(3/4)*b^(9/4))))/((-a)^(3/4)*b^(9 
/4)) - ((a*d - b*c)^2*((x*(a^4*d^4 + b^4*c^4 + 6*a^2*b^2*c^2*d^2 - 4*a*b^3 
*c^3*d - 4*a^3*b*c*d^3))/b + ((a*d - b*c)^2*(4*a*b^3*c^2 + 4*a^3*b*d^2 - 8 
*a^2*b^2*c*d))/(4*(-a)^(3/4)*b^(9/4))))/((-a)^(3/4)*b^(9/4))))*(a*d - b*c) 
^2*1i)/(2*(-a)^(3/4)*b^(9/4)) + (atan((((a*d - b*c)^2*((x*(a^4*d^4 + b^4*c 
^4 + 6*a^2*b^2*c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3))/b - ((a*d - b*c)^ 
2*(4*a*b^3*c^2 + 4*a^3*b*d^2 - 8*a^2*b^2*c*d)*1i)/(4*(-a)^(3/4)*b^(9/4)))) 
/((-a)^(3/4)*b^(9/4)) + ((a*d - b*c)^2*((x*(a^4*d^4 + b^4*c^4 + 6*a^2*b^2* 
c^2*d^2 - 4*a*b^3*c^3*d - 4*a^3*b*c*d^3))/b + ((a*d - b*c)^2*(4*a*b^3*c^2 
+ 4*a^3*b*d^2 - 8*a^2*b^2*c*d)*1i)/(4*(-a)^(3/4)*b^(9/4))))/((-a)^(3/4)*b^ 
(9/4)))/(((a*d - b*c)^2*((x*(a^4*d^4 + b^4*c^4 + 6*a^2*b^2*c^2*d^2 - 4*a*b 
^3*c^3*d - 4*a^3*b*c*d^3))/b - ((a*d - b*c)^2*(4*a*b^3*c^2 + 4*a^3*b*d^...